metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42⋊7D6, D12.13D4, Dic6.13D4, (C2×Q8)⋊5D6, C4.51(S3×D4), (C2×D4).51D6, C4.4D4⋊4S3, C12.28(C2×D4), (C6×Q8)⋊2C22, (C4×C12)⋊13C22, C6.51C22≀C2, D4⋊6D6.4C2, C12.D4⋊5C2, C3⋊3(D4.9D4), C42⋊4S3⋊11C2, (C22×C6).22D4, Q8.11D6⋊2C2, (C6×D4).67C22, C4.Dic3⋊6C22, C2.19(C23⋊2D6), (C2×C12).379C23, C4○D12.19C22, C23.10(C3⋊D4), (C2×C6).510(C2×D4), (C3×C4.4D4)⋊4C2, C22.31(C2×C3⋊D4), (C2×C4).116(C22×S3), SmallGroup(192,620)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C42⋊7D6
G = < a,b,c,d | a4=b4=c6=d2=1, ab=ba, cac-1=a-1b2, dad=a-1b, cbc-1=b-1, bd=db, dcd=c-1 >
Subgroups: 496 in 152 conjugacy classes, 39 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, C12, C12, D6, C2×C6, C2×C6, C42, C22⋊C4, M4(2), SD16, Q16, C2×D4, C2×D4, C2×Q8, C4○D4, C3⋊C8, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×Q8, C22×S3, C22×C6, C4.D4, C4≀C2, C4.4D4, C8.C22, 2+ 1+4, C4.Dic3, Q8⋊2S3, C3⋊Q16, C4×C12, C3×C22⋊C4, C4○D12, S3×D4, D4⋊2S3, C2×C3⋊D4, C6×D4, C6×Q8, D4.9D4, C42⋊4S3, C12.D4, Q8.11D6, C3×C4.4D4, D4⋊6D6, C42⋊7D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊D4, C22×S3, C22≀C2, S3×D4, C2×C3⋊D4, D4.9D4, C23⋊2D6, C42⋊7D6
Character table of C42⋊7D6
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | |
size | 1 | 1 | 2 | 4 | 4 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 8 | 12 | 12 | 2 | 2 | 2 | 8 | 8 | 24 | 24 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 0 | 0 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | -2 | 0 | 0 | 2 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ16 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ18 | 2 | 2 | 2 | -2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 0 | 0 | √-3 | √-3 | 1 | 1 | -√-3 | -√-3 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ20 | 2 | 2 | 2 | -2 | 2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | -1 | 0 | 0 | -√-3 | -√-3 | 1 | 1 | √-3 | √-3 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ21 | 2 | 2 | 2 | -2 | 2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | -1 | 0 | 0 | √-3 | √-3 | 1 | 1 | -√-3 | -√-3 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ22 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 0 | 0 | -√-3 | -√-3 | 1 | 1 | √-3 | √-3 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ23 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ24 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 2i | -2i | 0 | 0 | complex lifted from D4.9D4 |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | -2i | 2i | 0 | 0 | complex lifted from D4.9D4 |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 2 | -2√-3 | 2√-3 | 0 | 0 | 0 | 0 | 2ζ4ζ32 | 2ζ43ζ32 | 0 | 0 | 2ζ4ζ3 | 2ζ43ζ3 | 0 | 0 | complex faithful |
ρ28 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 2 | 2√-3 | -2√-3 | 0 | 0 | 0 | 0 | 2ζ43ζ3 | 2ζ4ζ3 | 0 | 0 | 2ζ43ζ32 | 2ζ4ζ32 | 0 | 0 | complex faithful |
ρ29 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 2 | -2√-3 | 2√-3 | 0 | 0 | 0 | 0 | 2ζ43ζ32 | 2ζ4ζ32 | 0 | 0 | 2ζ43ζ3 | 2ζ4ζ3 | 0 | 0 | complex faithful |
ρ30 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 2 | 2√-3 | -2√-3 | 0 | 0 | 0 | 0 | 2ζ4ζ3 | 2ζ43ζ3 | 0 | 0 | 2ζ4ζ32 | 2ζ43ζ32 | 0 | 0 | complex faithful |
(1 24 13 32)(2 47 14 38)(3 20 15 34)(4 43 16 40)(5 22 17 36)(6 45 18 42)(7 23 28 31)(8 46 29 37)(9 19 30 33)(10 48 25 39)(11 21 26 35)(12 44 27 41)
(1 16 29 11)(2 12 30 17)(3 18 25 7)(4 8 26 13)(5 14 27 9)(6 10 28 15)(19 22 38 41)(20 42 39 23)(21 24 40 37)(31 34 45 48)(32 43 46 35)(33 36 47 44)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 6)(2 5)(3 4)(7 13)(8 18)(9 17)(10 16)(11 15)(12 14)(19 38)(20 37)(21 42)(22 41)(23 40)(24 39)(25 26)(27 30)(28 29)(31 35)(32 34)(43 45)(46 48)
G:=sub<Sym(48)| (1,24,13,32)(2,47,14,38)(3,20,15,34)(4,43,16,40)(5,22,17,36)(6,45,18,42)(7,23,28,31)(8,46,29,37)(9,19,30,33)(10,48,25,39)(11,21,26,35)(12,44,27,41), (1,16,29,11)(2,12,30,17)(3,18,25,7)(4,8,26,13)(5,14,27,9)(6,10,28,15)(19,22,38,41)(20,42,39,23)(21,24,40,37)(31,34,45,48)(32,43,46,35)(33,36,47,44), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,13)(8,18)(9,17)(10,16)(11,15)(12,14)(19,38)(20,37)(21,42)(22,41)(23,40)(24,39)(25,26)(27,30)(28,29)(31,35)(32,34)(43,45)(46,48)>;
G:=Group( (1,24,13,32)(2,47,14,38)(3,20,15,34)(4,43,16,40)(5,22,17,36)(6,45,18,42)(7,23,28,31)(8,46,29,37)(9,19,30,33)(10,48,25,39)(11,21,26,35)(12,44,27,41), (1,16,29,11)(2,12,30,17)(3,18,25,7)(4,8,26,13)(5,14,27,9)(6,10,28,15)(19,22,38,41)(20,42,39,23)(21,24,40,37)(31,34,45,48)(32,43,46,35)(33,36,47,44), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,13)(8,18)(9,17)(10,16)(11,15)(12,14)(19,38)(20,37)(21,42)(22,41)(23,40)(24,39)(25,26)(27,30)(28,29)(31,35)(32,34)(43,45)(46,48) );
G=PermutationGroup([[(1,24,13,32),(2,47,14,38),(3,20,15,34),(4,43,16,40),(5,22,17,36),(6,45,18,42),(7,23,28,31),(8,46,29,37),(9,19,30,33),(10,48,25,39),(11,21,26,35),(12,44,27,41)], [(1,16,29,11),(2,12,30,17),(3,18,25,7),(4,8,26,13),(5,14,27,9),(6,10,28,15),(19,22,38,41),(20,42,39,23),(21,24,40,37),(31,34,45,48),(32,43,46,35),(33,36,47,44)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,6),(2,5),(3,4),(7,13),(8,18),(9,17),(10,16),(11,15),(12,14),(19,38),(20,37),(21,42),(22,41),(23,40),(24,39),(25,26),(27,30),(28,29),(31,35),(32,34),(43,45),(46,48)]])
Matrix representation of C42⋊7D6 ►in GL4(𝔽73) generated by
17 | 66 | 63 | 66 |
7 | 10 | 7 | 56 |
10 | 7 | 17 | 66 |
66 | 17 | 7 | 10 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
72 | 0 | 0 | 0 |
0 | 72 | 0 | 0 |
0 | 0 | 13 | 30 |
0 | 0 | 43 | 43 |
13 | 30 | 0 | 0 |
43 | 43 | 0 | 0 |
0 | 0 | 43 | 60 |
0 | 0 | 30 | 30 |
30 | 13 | 0 | 0 |
43 | 43 | 0 | 0 |
G:=sub<GL(4,GF(73))| [17,7,10,66,66,10,7,17,63,7,17,7,66,56,66,10],[0,0,72,0,0,0,0,72,1,0,0,0,0,1,0,0],[0,0,13,43,0,0,30,43,13,43,0,0,30,43,0,0],[0,0,30,43,0,0,13,43,43,30,0,0,60,30,0,0] >;
C42⋊7D6 in GAP, Magma, Sage, TeX
C_4^2\rtimes_7D_6
% in TeX
G:=Group("C4^2:7D6");
// GroupNames label
G:=SmallGroup(192,620);
// by ID
G=gap.SmallGroup(192,620);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,254,219,184,1123,570,297,136,1684,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d=a^-1*b,c*b*c^-1=b^-1,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export